Solid Oxide Electrolysis
Overview of the technology and current developments at CEA

Julie MOUGIN
Head of Hydrogen Technologies Laboratory

Florence LEFEBVRE-JOUD
Deputy Director for Science

CEA-Liten
Outline

- French National context
- H₂ production with low carbon footprint: interest of SOEL
- Current status and main challenges
- CEA activities and achievements
- Conclusion
- Acknowledgements
French national context: raise of hydrogen for energy transition

- **2016**: First public initiative for « hydrogen territories »
- **2018**: Governmental initiative for Hydrogen deployment
- **2019**: Pluriannual energy programmation and Energy-Climate law
- **2020**: Implementation aligned with EU Green Deal

Quantified targets for clean H₂ in

- **Industry**
- **Transportation**
- **Grid stability**

Law, financial incentives defined to foster clean H₂ in

- **Industry**
- **Transportation**

QUANTIFIED TARGETS

- **INDUSTRY**
 - Electrolysis capacity: 700 MW
 - Deployment will be based on overall CO₂ emissions and costs

- **TRANSPORTATION**
 - Refueling stations: ~100 in 2023, ~850 in 2028

RD20 - 1 October 2020 - Julie Mougin, CEA
Hydrogen production with low carbon footprint: interest of Solid Oxide Electrolysis (SOEL)

HIGH EFFICIENCY TECHNOLOGY

\[\Delta H = \Delta G + T \Delta S \sim \text{constant} \]

\[\text{H}_2\text{O} (g) \rightarrow \text{H}_2 (g) + \frac{1}{2} \text{O}_2 (g) \]

To electrolyse a water molecule the reaction overall energy \(\Delta H \) has to be provided either as electric energy or as heat.

- \(\Delta G \) is the minimum part of electric energy required for the electrolysis reaction, the rest can be provided as heat.
- The hotter the electrolysis operation, the lower the electricity demand:
 - High T: energy = 70% electricity, 30% heat
 - Low T: energy = 85% electricity / 15% heat
- Main advantage of SOEL with T range = 700-850°C

FLEXIBILITY OF USE

Same core technology for several applications:

- Hydrogen production
- Electricity production
- Fuel cell Module (SOFC)
- Reversible Module (rSOC)
- Co-electrolysis Module (co-SOEL)
- Co-electrolysis \(\text{CO}_2/\text{H}_2\text{O} \)
- Production of synthetic fuels Power to X
- Feedstack for industry, fuel for mobility, energy storage
- Stationary CHP Heat and power
- SOEL/SOFC reversible
- Renewable energies storage
- Feedstack for industry, fuel for mobility, energy storage
Current status of Solid Oxide Electrolysis (SOEL) and main challenges

Technology with no expensive noble catalysts

Modular technology

Electrolysis cell composed of:
- 2 electrodes (anode and cathode)
- One electrolyte
- Need of electricity (and heat)

Stacking of several electrolysis cells to increase the power

Integration of stacks into a **module** including 1st level Balance of Plant components
Can/will include several stacks into a module

Integration of modules into an **electrolysis system/plant** including all Balance of Plant components = electrolyser
Can/will include several modules into the electrolysis system/plant

Electrolyte (YSZ)
Electrode H₂ (Ni-YSZ)
Electrode O₂ (LSM-YSZ)
Current status of Solid Oxide Electrolysis (SOEL) and main challenges

MAIN SYSTEMS IN OPERATION

- **2014**
 1er SOEL system in operation at CEA
 - 1 stack – 1 Nm³/h of H₂ produced à 700°C
 - Efficiency measured 99%HHV

- **2017**
 Sunfire Grinhy system installed in a steelmaking plant in Germany
 - 150 kW - 40 Nm³/h of H₂

- **2018**
 1er rSOC system delivered to a customer (Sylfen-CEA)

- **2020**
 720 kW SOEL installed in August 2020 on the steel plant (Grinhy 2.0)
 - Will produce 100t of H₂ until end of 2022

- **2021**
 Multimodule rSOC to be installed in Italy
 - 16 Nm³/h H₂ produced in SOEL mode
 - 15 kWe in fuel cell mode

- **2022**
 Installation of a 2.6 MW SOEL unit in a biorefinery in Rotterdam (MULTIPLHY project)
Current status of Solid Oxide Electrolysis (SOEL) and main challenges

STATUS

Cells and Stacks
- High performances: current density of 0.6 A/cm² and above at the thermoneutral voltage (1.3V)
- Durability: degradation < 2%/1000h

Modules and Systems
- First demonstration systems installed
- Upscaling and in-field deployment for various use cases

Ambitious improvement of key parameters

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Unit</th>
<th>SoA</th>
<th>2020</th>
<th>2024</th>
<th>2027</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electricity consumption @ nominal capacity</td>
<td>kWh/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heat demand @ nominal capacity</td>
<td>kWh/kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capital cost</td>
<td>€/(kg/d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(€/kW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O&M cost</td>
<td>€/(kg/d)/yr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hot idle ramp time</td>
<td>sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cold start ramp time</td>
<td>h</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Footprint</td>
<td>m²/MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Degradation @ U_{IN}</td>
<td>%/1,000hrs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Current density</td>
<td>A/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Use of critical raw materials as catalysts</td>
<td>mg/W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Roundtrip electrical efficiency</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Reversible capacity</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Strategic Research and Innovation Agenda, Final Draft, Hydrogen Europe, 07/2020
Cell optimization to reach the best combination of performance/durability with an approach combining

On the whole value chain, from cell to system through stack and module; for different usages & operating modes

High performance cell:
- ~ + 15% of i at 1.3V as compared to SoA cell
- Understanding of phenomena responsible of degradation

Source: Monaco et al., J. Electrochem. Soc. 166 (15), (2019) F1229-F1242
Thermal integration at the SOEL system scale

- No need of high temperature heat source to reach high efficiency
- A heat source at 150°C to generate steam is sufficient
- High efficiency measured in SOEL mode thanks to:
 - Highly efficient heat exchangers
 - Operating point slightly exothermic

J. Mougin, 12th European SOFC&SOE Forum 5-8 July 2016, Luzern, A0605 (2016)
High pressure SOEL operation

- up to 30 bar in the lab at cell level
- Pressurized operation allows to:
 - reach higher current densities and steam conversion
 - Shift limiting current to higher current densities
 - Most important impact between 1 and 6 bar

Direct consequence on efficiency:

- Double benefit:
 - Cell/stack level: performance
 - System benefit:
 - One H_2 compression step avoided
 - Higher steam conversion

L. Bernadet, et al., Electrochimica Acta 253 (2017)
Co-electrolysis operation at system level

- From H₂O + CO₂, production of syngas (H₂+CO)
- Performances close to those measured in pure SOEL

Syngas composition can be tuned to fit with downstream chemical synthesis process
- P2X: synthesis of CH₄, methanol, DME, ...

M. Reytier, et al., IJHE 40/35 (2015) 11370–11377

rSOC operation at system level

- 3 operating modes: SOEL, SOFC-H₂, SOFC-CH₄
- 9 operating points defined + a standby point
- Evaluation of the transition times

Quick transitions
- in less than 10 min

HIGH TEMPERATURE ELECTROLYSIS (SOEL): TECHNOLOGY WITH MANY ASSETS

- High efficiency technology, with potential for excellent level of performance
- High flexibility technology: co-electrolysis, reversible operation
 - which opens up additional applications to pure production of H₂ such as P2X and renewable energy storage
- High adaptability technology with appropriate BOP & management strategies:
 - No need for a high T heat source
 - Ability to operate with intermittent energy sources, and under pressure 10-30 bar
- Potential to be a "game changer" to produce low cost H₂:
 - ~ 2 € / kg or even less for large units ~ 100 MW
 - ~ 7 € / kg for small decentralized units ~ 100 kW
- Less mature than low-T technologies, but demonstrators now out of the laboratory worldwide, and power growing exponentially
- Technology transfer of CEA stack technology in progress

FRENCH ROADMAP

- 300 kW in 2022
- 2 MW in 2024
- ~100 MW in 2027 and beyond
ACKNOWLEDGMENTS

Jérome Laurencin, Julie Vulliet, Jérome Aicart, Marie Petitjean, whose works are presented, and many other CEA colleagues contributing to the overall development and study of SOE cells, stacks and systems.

Europe H2020 – FCH-JU (Sophia, Eco, REFLEX, Balance, NewSOC projects)

National Research Agency – ANR (Django and Ecoreve projects)

Institut Carnot Energies du Futur
Thank you for your attention

ACKNOWLEDGMENTS

Jérome Laurencin, Julie Vulliet, Jérome Aicart, Marie Petitjean, whose works are presented, and many other CEA colleagues contributing to the overall development and study of SOE cells, stacks and systems.

Europe H2020 – FCH-JU (Sophia, Eco, REFLEX, Balance, NewSOC projects)

National Research Agency – ANR (Django and Ecoreve projects)

Institut Carnot Energies du Futur